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ABSTRACT
Biodegradable plastics are increasingly adopted as alternatives to conventional polymers, yet their environmental
behavior and indirect risks remain insufficiently characterized. This review synthesizes polymer chemistry,
environmental fate studies and microbial ecology to evaluate how common biodegradable materials including
Polylactic Acid (PLA), poly(Butylene Adipate co Terephthalate) (PBAT), Polyhydroxyalkanoates (PHAs) and starch
blends undergo hydrolysis, photooxidation, enzymatic cleavage and mechanical abrasion that generate persistent
microplastics and nanoplastics together with diverse chemical leachates. Reported leachate classes including
monomers, oligomers, plasticizers, metal pro oxidants and UV stabilizers, detection methods and environmental
concentrations are summarized, along with evidence for ecological effects on microbial communities and macrofauna.
Weathering and particle formation modify surface chemistry, enhance sorption of contaminants such as antibiotics
and metals and create microsites of elevated chemical stress. A central focus is the plastisphere that forms on
biodegradable microplastic surfaces. Across studies, biofilms show reproducible taxonomic and functional shifts
including enrichment of hydrolases, stress response pathways and biofilm associated taxa relative to surrounding
matrices. Available data indicate that biodegradable microplastics concentrate antibiotic resistance genes and mobile
genetic elements and that seasonal aging and surface oxidation amplify these patterns. Experimental research
identifies three pathways by which biodegradable microplastics may elevate horizontal gene transfer including
increased cell proximity in biofilms that promotes conjugation, oxidative and chemical stress from aged leachates that
enhances transformation competence and physical transport of plasmids and mobile genetic elements across
environments. Quantitative microcosm studies illustrate the magnitude and context dependence of these effects. To
support risk assessment, methodological best practices are recommended including harmonized sampling, realistic
aging protocols, standardized particle characterization, plasmid resolved metagenomics and stable isotope probing.
A tiered monitoring framework and focused research agenda are proposed to guide responsible deployment and
governance of biodegradable plastics.

KEYWORDS
Biodegradable plastics, Biodegradable Microplastics (BioMPs), plastisphere, Horizontal Gene Transfer (HGT), antibiotic-
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INTRODUCTION
Biodegradable and compostable plastics have emerged as pivotal alternatives in the global effort to
reduce the environmental burden of conventional petroleum-derived polymers. Their market share has
surged from under 1% in 2018 to over 5% in 2024, spurred by ambitious plastic reduction mandates in
the European Union, Asia-Pacific and North America1,2. Financial incentives, including subsidies for
bioplastic feedstocks, green procurement policies and extended producer responsibility schemes-further
accelerate adoption by manufacturers and consumers. Simultaneously, major brands and municipalities
pledge transitions to certified compostable packaging, embedding these materials within circular-
economy strategies.

Yet mounting evidence reveals that these so-called “green” polymers frequently fragment rather than fully
mineralize under real-world conditions3 and concurrently release a spectrum of chemical leachates4.
Laboratory and field studies document breakdown into biodegradable micro- and nanoplastics (BioMPs)
via hydrolysis, photodegradation and mechanical erosion. Meanwhile, additives, oligomeric byproducts
and  residual  monomers  leach  into aqueous  and  terrestrial  habitats,  where  they  accumulate  at
polymer-biofilm interfaces.

These processes occur under suboptimal conditions; ambient temperatures, fluctuating moisture and
complex microbial consortia, where complete biodegradation is rarely achieved; instead, degradation
pathways yield heterogeneous debris laden with additives and oligomers5. Material heterogeneity,
crystalline domains and environmental variables further slow depolymerization, extending particle
residence times and enhancing opportunities for ecotoxicological impacts.

Once formed, BioMPs rapidly colonize water bodies, soils and aerosols, promoting dense biofilm
development through adsorption of dissolved organic matter and micropollutants. Within these biofilms,
antibiotic-resistance genes (ARGs) can concentrate and Horizontal Gene Transfer (HGT) pathways
including conjugation, transformation and transduction are enhanced by close cell-cell contact and
chemical stressors leached from the plastics6. Stress responses induced by plasticizers and UV stabilizers
upregulate mobile genetic elements (MGEs) such as integrons and conjugative plasmids, creating hotspots
for ARG enrichment and spread.

This  review  clarifies  terminology  distinguishing  biodegradable,  compostable,  and  bio-based
polymers; reviews market drivers and regulatory frameworks that are accelerating their adoption;
synthesizes  evidence  on  environmental  aging  and fragmentation pathways that generate
biodegradable micro- and nanoplastics; evaluates the effects of chemical leachates on microbial
community structure and  on the mobility of antibiotic-resistance genes and other mobile genetic
elements  and  develops a  conceptual  model  linking  polymer  type  and  environmental fate to
plastisphere dynamics and ARG/MGE distribution. By integrating polymer chemistry, environmental
microbiology,  and  molecular  ecology,  the  framework  identifies  critical  knowledge  gaps  and
proposes prioritized research, monitoring and policy actions to mitigate unintended ecological and
genetic risks associated with biodegradable materials.

ENVIRONMENTAL FATE AND AGING OF BIODEGRADABLE POLYMERS
This section Reviews major biodegradable polymer classes (PLA, PBAT, PHA, starch-blends and oxo-bio),
their intended end-of-life pathways and how environmental aging processes (hydrolysis, enzymatic
cleavage, photo-oxidation, mechanical abrasion) fragment them into persistent micro-/nanoplastic debris.
Summarizes chemical leachates (monomers, oligomers, additives), reported concentration ranges and
ecotoxicological concerns and emphasizes the divergence between standardized lab degradation and
real-world fate.
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Polymer chemistry, types marketed as “biodegradable/compostable”, and real-world fate: Polylactic
Acid (PLA), Polybutylene Adipate-Co-Terephthalate (PBAT), Polyhydroxyalkanoates (PHAs), starch-blend
formulations and oxo-biodegradable plastics represent the major commercial classes labeled as
biodegradable or compostable. Their chemistries range from aliphatic polyesters (PLA, PBAT, PHA) to
polysaccharide  composites  (starch-blends)  and  pro-oxidant-modified  petroplastics.  Intended  End-of-
Life (EOL) applications span industrial composting infrastructure (58EC, high humidity), home compost
piles (20-40EC), soil burial and in select certified PHA grades marine biodegradation.

Despite robust standards under ASTM and ISO, real-world degradation rarely mirrors laboratory
conditions. The PLA typically achieves >90% mass loss in industrial composters within 180 days but
degrades  <50% after two years in temperate soils and shows negligible breakdown in marine settings.
The PBAT attains ~80% mineralization in industrial compost within 90 days but stalls below 40% under
home-compost regimes. The PHAs biodegrade effectively across aerobic and anaerobic matrices yet retain
measurable fragments in cold or nutrient-limited waters. Starch-blend plastics crumble into microporous
residues, while oxo-biodegradables produce oxidized polymer fragments that resist microbial assimilation.

Market uptake has accelerated: Global bioplastic production capacity rose from 2.1 million t in 2019 to
an estimated 2.8 million t by 2024, driven by EU single-use bans, national compostability mandates and
corporate net-zero commitments. However, policy frameworks often equate “biodegradable” with
environmental benignity, underestimating fragment persistence and micro and nanoplastic generation
in natural compartments.

Table 1 summarizes major commercial biodegradable polymer classes, their typical uses, intended End-Of-
Life (EOL) pathways and reported real-world degradation rates. Helps readers compare known
shortcomings and common secondary products across polymers.

Mechanisms of environmental aging and particle (BioMP) formation: Biodegradable polymers
undergo multiple aging processes that fragment bulk material into micro and nanoplastics (BioMPs) under
realistic environmental and composting conditions. Hydrolysis predominates in PLA and starch-blends,
where water penetrates ester bonds, producing fragments in the 1-100 µm range at 25-40EC with neutral
to  slightly  acidic  pH.  Enzymatic  cleavage  by  cutinases,  lipases  and  microbial  esterases  accelerates
chain scission in PBAT and PHA, yielding submicron particles (<1 µm) under industrial compost scenarios
(58EC, pH 6.5-7.5).

Photo-oxidation in aquatic systems exposes surface layers to UV-A and UV-B (0.5-1.0 W/m2), generating
carbonyl and hydroxyl radicals that initiate chain cleavage, producing 10-500 µm fragments and altering
surface polarity, which enhances colloidal stability. Mechanical fragmentation, through abrasion in riverine
or marine currents and soil tilling, breaks materials into broad size distributions (<50 µm) and increases
surface roughness, promoting biofilm colonization.

Table 2 summarizes aging processes (hydrolysis, enzymatic cleavage, photo-oxidation and mechanical
fragmentation) and the typical particle types produced. Lists analytical methods used and reported
concentration/range data where available.

Chemical leachates, oligomers and additive residues from biodegradation: As biodegradable
polymers weather, they release monomers, oligomers and additives that alter microbial habitats. The  PLA
degradation liberates lactic acid monomers and low molecular weight oligomers detectable by HPLC-MS
at 0.5-5 µg/L in soil porewater. The PBAT fragments emit adipate and terephthalate oligomers (1-10 µg/L),
implicated in endocrine disruption of aquatic invertebrates. Starch-blend films often incorporate phthalate
plasticizers, which leach at 0.1-1 µg/L and exhibit estrogenic activity in algae bioassays.
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Metal-based pro-oxidant residues (iron or manganese stearates) from oxo-bio plastics accumulate in soils
(50-200 µg/kg), catalyzing reactive oxygen species generation and microbial stress. The UV stabilizers
(benzotriazole derivatives) persist in compost leachate (0.05-0.5 µg/L), showing phototoxicity to
cyanobacteria. Aged BioMPs also exhibit enhanced sorption of hydrophobic pollutants, driven by
increased surface polarity and pore formation.

Interaction of particles/leachates with abiotic pollutants (antibiotics, metals): BioMP surfaces and
leachates foster adsorption of co-contaminants, modulating local concentrations within biofilms-crucial
for antibiotic resistance gene (ARG) dynamics. Weathered PLA microparticles exhibit high affinity for
tetracycline (Kd .500 L/kg), concentrating antibiotics and promoting conjugative plasmid transfer in
biofilms. PBAT nanoplastics, after UV aging, adsorb ciprofloxacin moderately (Kd .200 L/kg), creating
microsites of elevated drug pressure.

Table 3 illustrates the Inventory of leachate compounds or classes, the source polymer for each
compound, the detection method and reported environmental concentrations. Also lists known
ecotoxicological endpoints associated with each compound class.

The PHA particles strongly bind divalent metals; Cu2+ removal efficiencies exceed 80% at environmental
pH, enriching biofilms with copper and exacerbating oxidative stress in microbes. Starch-blend fragments
adsorb Pb2+ (~50% uptake), co-localization leads with microbial cells and heightens metal toxicity. These
interactions underscore BioMPs’ dual role as vectors for ARG propagation and abiotic pollutant
accumulation.

Table 4 summarizes the measured adsorption of co-contaminants (antibiotics, metal ions) to aged BioMPs
and the environmental implications. Reports adsorption behavior metrics and citations for each
contaminant-polymer pairing.
   
PLASTISPHERE DYNAMICS: MICROBIAL COLONIZATION, ARGS AND HORIZONTAL GENE TRANSFER
This section describes the plastisphere formed on BioMPs: Distinctive taxonomic and functional biofilm
signatures that often enrich hydrolases and stress-response functions relative to ambient matrices.
Synthesizes observational and mechanistic evidence that BioMPs concentrate ARGs and MGEs and that
biofilm proximity, ROS/leachates and particle-mediated transport can increase HGT and co-occurrence
of degradative genes with ARGs.

Biofilm formation on biodegradable particles: Taxonomy and functional profiles: BioMPs in aquatic
and terrestrial settings rapidly acquire distinctive biofilms whose taxonomic composition diverges
markedly from surrounding water or soil communities17. High-throughput sequencing of PET and PS
debris  in  coastal  waters  revealed Proteobacteria  dominance  (>65%)  alongside  enrichment of
hydrocarbon-degrading genera such as Alcanivorax and Marinobacter, traits absent or rare in ambient
seawater communities18. Biofilms on PLA and starch-blend fragments in laboratory microcosms similarly
showed overrepresentation of Bacilli (Bacillus, Lysinibacillus), Actinobacteria (Streptomyces) and
opportunistic Proteobacteria (Pseudomonas, Acinetobacter), reflecting selective colonization by polymer-
assimilating taxa19. In landfill soil, metatranscriptomics of HDPE-associated biofilms demonstrated early
induction of plastic-degrading alkane monooxygenase genes (alkB1/alkM) and fatty-acid β-oxidation
transcripts, indicating functional maturation of plastisphere communities distinct from bulk soil.

Comparative metagenomic surveys highlight that biodegradable polymers despite their engineered
degradability still foster plastisphere assemblages enriched for hydrolases (esterases, cutinases, PETases),
stress response genes (oxidative stress regulators) and mobile genetic elements, underscoring functional
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convergence  across  polymer  types.  Emerging  evidence  suggests  that  physicochemical  weathering
(photo-oxidation, hydrolysis) further shapes biofilm composition by exposing new binding sites and
niches. Integrating taxonomic and functional profiles offers a framework to predict ecological roles of
plastisphere communities and their potential impacts on gene exchange.

Table 5 compares taxonomic and functional signatures observed on BioMP biofilms across multiple studies
and environments. Shows dominant taxa, enriched functions, study-specific notes and citations for each
comparative entry.

ARGs, MGEs and observational evidence for enrichment on BioMPs: Multiple qPCR and metagenomic
studies document elevated abundances of antibiotic-resistance genes (ARGs) and mobile genetic elements
(MGEs) on microplastics, including biodegradable formulations, compared to surrounding matrices. In
wastewater treatment plants, PBAT and PLA fragments harbored ARGs such as tetA, sul1 and bla_TEM at
concentrations 5-10 times higher than in the suspended solids, with class 1 integrons (intI1) and IncP
plasmid markers significantly enriched on polymer surfaces20. Mariculture ponds exhibited striking
hotspots:  Starch-blend  debris  collected  near  fish  cages  carried  sul2, qnrS and  tetM  in  densities  up
to 108 copies/g, coinciding with elevated MGE integrase and transposase gene counts, implicating plastic
debris as reservoir vectors in aquaculture effluents21. Seasonal and aging factors further modulate this
enrichment; UV-exposed fragments demonstrate stronger ARG association than virgin plastics, suggesting
surface oxidation enhances gene adsorption and microbial colonization niches.

As emerging evidence links BioMP-associated ARG hotspots to public-health risk, standardized
methodologies combining high-resolution metagenomics, qPCR and fluorescence in situ hybridization
are critical to quantify gene transfer potentials across environmental compartments.

Table 6 catalogues studies that report enrichment of antibiotic-resistance genes (ARGs) and mobile
genetic elements (MGEs) on BioMPs versus surrounding matrices. Shows matrix type, polymer, detected
ARGs/MGEs, method used and the key quantitative result.

Mechanistic  pathways: How  BioMPs  and  leachates  may  promote  HGT: Mechanistic  studies
elucidate how BioMPs and their chemical leachates facilitate horizontal gene transfer (HGT) among
microbial  communities.  A  key  driver  is  biofilm-mediated  proximity:  aged  PLA  microparticles  induced
a threefold increase in conjugative transfer frequency of an RP4-type plasmid carrying tet(M) between
Escherichia coli strains in freshwater microcosms22. Photo-oxidation adds another layer: UV-aged PBAT
nanoplastics generated reactive oxygen species (ROS) that elevated membrane permeability and
competence  of  Pseudomonas  putida,  doubling  transformation  rates  of  extracellular  plasmid  DNA23.
Additionally, leachates such as lactic acid oligomers and plasticizers can serve as chemical stressors,
upregulating  conjugation  machinery  in  donor  strains  and  promoting  plasmid  persistence  under
selective  pressure;  filter-mating  assays  demonstrated  that  the  presence  of  PBAT  leachate  increased
transfer of an IncP plasmid by 1.5-fold in soil biofilms24.

Figure 1 illustrates mechanistic pathways by which Biodegradable Microplastics (BioMPs) and their aged
leachates  can  promote  horizontal  gene  transfer  (HGT)  among  environmental  bacteria,  directly  tying
into the processes. The diagram connects biofilm-mediated conjugation on particle surfaces,
ROS/leachate-driven increases in transformation competence and physical plasmid transport between
compartments (freshwater, soil, compost). Annotated example outcomes (e.g., ~3× increase in conjugative
transfer with aged PLA).
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Fig. 1: Mechanistic pathways linking biodegradable microplastics (BioMPs) and leachates to increased
horizontal gene transfer and ARG dissemination (self-generated)

Schematic showing a BioMP bearing a dense biofilm with donor and recipient cells; arrows label three
mechanisms: Biofilm-mediated conjugation, ROS/leachate 6 increased transformation and plasmid
transport  on  particle  surfaces.  Insets  depict  representative  aged  particles  (PLA  vs.  UV-aged  PBAT)
and  short  result  callouts  to  illustrate  observed experimental effects on transfer rates. Abbreviations;
BioMP:  Biodegradable  microplastic,  HGT:  Horizontal  Gene Transfer, ARG: Antibiotic-resistance gene,
ROS: Reactive oxygen species, PLA: Polylactic Acid and PBAT: Poly (butylene adipate-co-terephthalate).

Plastic-degrading  genes,  selection  for  degradative  functions  and  co-occurrence  with
ARGs/MGEs: BioMP-associated communities often carry and express plastic-degrading enzyme genes
enriched  on  particle  surfaces.  Metagenomic  mining  reveals  widespread  distribution  of  esterases,
cutinases,  PETases  and  lipases  on  PBAT/PLA  debris  in  compost  plants,  with  localization  on
conjugative plasmids in Pseudomonas and Bacillus isolates25. Stable isotope probing (SIP) experiments
further  confirm  that  Pseudomonas  putida  strains  assimilate  PLA-derived  carbon  while  harboring
multiple ARGs  (tetA, bla_OXA) on the same megaplasmid, illustrating physical linkage and co-selection
potentials26. Genomic context analyses show degradative genes often flank transposase elements,
suggesting mobilization among soil and compost microbiomes. Such co-occurrence raises concerns that
selection for polymer degradation in managed waste streams could inadvertently enrich antibiotic-
resistance reservoirs.

Table 7 Summarizes reported plastic-degrading genes/enzymes, their polymer substrates, environment
of detection, evidence type and co-occurrence with ARGs or MGEs. Helps illustrate genomic contexts (e.g.,
plasmid localization) and citations for each gene/enzyme entry.

METHODS, MONITORING AND POLICY: STANDARDS TO ASSESS AND MANAGE
BIOPHARMACEUTICAL RISKS
This section provides methodological recommendations (standardized sampling, realistic aging protocols,
particle characterization, plasmid-resolved metagenomics and SIP), a tiered monitoring framework for
sentinel  environments  and  policy/industry  actions  to  reduce  unintended  risks.  Presents  a  prioritized
3-year  research  roadmap (short-term HGT assays, medium-term plasmid-resolved surveys, long-term
SIP+evolution studies) and metrics to translate findings into regulation and stewardship.
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Methodological best practices for the field: sampling, aging protocols and molecular workflows:
To ensure reproducibility and comparability across studies of biodegradable microplastics (BioMPs),
methodological standardization is paramount. Sampling designs should capture spatiotemporal variability
in target matrices, employing nested random-stratified schemes for water, soil and sediment to avoid
selection bias. Report particle counts by size fraction (e.g., >100 µm, 10-100 µm, <10 µm) and employ
density separation or enzymatic digestion to remove organic debris prior to analysis27.

Aging protocols must reflect real-world conditions. Laboratory composting at 58EC (ASTM D5338)
simulates industrial facilities, whereas home-compost protocols at 25-40EC capture lower-temperature
degradation. Field-aging involves exposing coupons in situ (soil beds, marine racks) for defined durations,
with parallel photoaging under controlled UV-A/B irradiance (0.5-1.0 W/m²). Report cumulative irradiation
doses and moisture cycles to facilitate kinetic modeling27.

Molecular workflows demand rigorous controls. Include negative extraction blanks to track background
ARG levels; spike-in internal standards (e.g., synthetic oligonucleotides) for process efficiency; and quantify
DNA yields by Qubit or droplet digital PCR. Leverage plasmid-resolved metagenomics and long-read
sequencing (Oxford Nanopore or PacBio HiFi) to accurately assign mobile genetic elements (MGEs),
integrate stable isotope probing (SIP) for causal linkage of function and reconstruct high-confidence gene
cassettes28.

Table 8 provides a recommended standardized methods checklist across steps (sampling, aging protocols,
particle characterization, molecular assays, controls and reporting). Specifies best practices and key
reporting items for each methodological step.

Monitoring framework and environmental surveillance priorities: A tiered surveillance framework
targets sentinel environment where BioMP-associated ARG hotspots are most likely. Primary sites include
industrial compost facilities, mariculture sediments, agricultural soils amended with compost or bioplastics
and sewage treatment plant (STP) effluents29. Within each site, sampling frequency should align with
operational cycles-e.g., monthly for compost reactors, quarterly for agricultural fields and biweekly for STP
influent/effluent.

Core measurements encompass particle counts and size distributions (flow imaging or microscopy),
leachate chemistry (HPLC-MS of monomers and additives), ARG/MGE abundance (qPCR targeting sul1,
tetA, intI1 and IncP plasmids) and plasmid profiling (long-read metagenomics for plasmid replicon
typing)30. Decision thresholds might trigger risk-management actions: ARG loads >106 copies/g or particle
counts >104 particles/L warrant mitigation measures, such as biofilter optimization or feedstock
adjustments. Community-accessible dashboards should integrate geospatial and temporal trends to guide
policymakers and operators.

Table 9 presents a monitoring matrix for sentinel environments (industrial compost, mariculture sediment,
agricultural soil, sewage treatment plant) with sampling frequency, core measurements and decision
thresholds. Links core measurements to action triggers (e.g., ARG copy thresholds) and citations.

Policy, industry practice and risk-management recommendations: Contemporary policy frameworks
in the EU and US shape biodegradable polymer adoption yet often lack provisions for monitoring
unintended ARG dissemination. The EU’s Packaging and Packaging Waste Regulation mandates
certification for compostable materials but omits microplastic and ARG surveillance requirements31. The
US Federal Trade Commission’s (FTC) “Green Guides” debate on “compostable” labeling has led to
divergent state-level statutes, creating market confusion and inconsistent end-of-life infrastructure32.
Industry practice currently emphasizes feedstock traceability and ASTM-compliant testing, but additive
safety assessments rarely consider downstream effects on microbial gene pools.
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Risk-management must integrate life-cycle analysis with monitoring data. Policymakers should require
producers to submit environmental fate studies, including BioMP fragmentation and ARG hotspot
potential, as part of product registration. Industry alliances can establish “compostable polymer
stewardship programs” that enforce validated end-of-life pathways and fund surveillance. Additive
selection criteria should prioritize non-toxic, rapidly metabolizable compounds. End-of-life labeling must
indicate recommended disposal conditions (e.g., “certified industrial compost only”) to mitigate misuse.

Table 10 compares jurisdictional/industry practices, current rules or policies, identified gaps and
recommended actions to address BioMP-related ARG risks. Provides actionable policy and industry steps
alongside citations.

Research gaps, prioritized experiments and a 3-year roadmap: Addressing BioMP-associated ARG risks
requires targeted research spanning laboratory to field scales. In the short term (0-12 months),
standardized HGT assays using aged BioMPs and leachates should quantify conjugation, transformation
and transduction rates under controlled microcosms, varying temperature, moisture and UV exposure34.
Medium-term (12-24 months) work entails plasmid-resolved metagenomic surveys of compost and
mariculture sites, integrating long-read sequencing to map ARG-degradative gene co-occurrence and
track MGE dynamics in situ. Long-term (24-36 months) projects will deploy stable isotope probing (SIP)
coupled with evolutionary experiments in mesocosms to test co-selection: Plastic carbon assimilation by
degraders alongside ARG enrichment trajectories33.

Metrics for impact include: (i) Rates of HGT per particle surface area, (ii) Distribution of ARG-degradation
gene linkages on MGEs, (iii) Thresholds at which field conditions drive co-selection above background
levels and (iv) Efficacy of mitigation measures (e.g., feedstock modifications) in reducing gene transfer.
Interdisciplinary consortia combining polymer chemists, microbial ecologists, bioinformaticians and public-
health experts will ensure findings translate into design guidelines, regulatory standards and monitored
industry practices.

Table 11 sets out a prioritized 3-year research agenda: short-, medium- and long-term projects, methods,
timelines/resources and expected policy relevance. Helps translate research priorities into estimated
timelines and outcomes.

CONCLUSION
Biodegradable plastics can reduce dependence on conventional polymers, yet this review shows they still
generate persistent micro and nanofragments and diverse leachates that require careful evaluation. Field
and laboratory evidence indicates that biodegradable microplastics host distinct biofilms and can
concentrate antibiotic resistance genes and mobile genetic elements, creating conditions that may
enhance horizontal gene transfer. Biofilm proximity, oxidative and chemical stress from aged leachates
and particle mediated transport act together to increase the likelihood of gene exchange across
environmental compartments. Addressing these risks requires harmonized sampling and aging protocols,
rigorous characterization of particles and leachates and plasmid resolved molecular workflows as standard
practice. A practical research agenda that combines short term horizontal gene transfer assays, medium
term plasmid resolved surveys and long term stable isotope and evolution studies can provide the
evidence needed for governance. With targeted research and proportional policy measures,
biodegradable plastics can be deployed responsibly while minimizing unintended ecological and genetic
impacts.

SIGNIFICANCE STATEMENT
Biodegradable plastics offer important benefits over conventional polymers, but our synthesis shows they
can still generate persistent micro- and nanofragments and diverse leachates that may concentrate
antibiotic-resistance genes and mobile elements. Mechanistic and observational evidence points to three
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nonexclusive pathways: Biofilm-mediated conjugation, leachate/ROS-driven transformation competence
and particle-mediated plasmid transport that can enhance horizontal gene transfer in environmental
microbiomes. Responsible deployment therefore requires harmonized methods, targeted monitoring
(including plasmid-resolved metagenomics) and policy measures that explicitly consider particle
formation, leachate chemistry and genetic risks alongside end-of-life benefits.
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